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SUMMARY 
In pumping installations such as sewage pumping stations, where gas content and air entrainment exist, the 
computation of fluid pressure transients in the pipelines becomes grossly inaccurate when constant wave 
speed and constant friction are assumed. A numerical model and computational procedure have been 
developed here to better compute the fluid pressure transient in a pipeline by including the effects of air 
entrainment and gas evolution characteristics of the transported fluid. Free and dissolved gases in the fluid 
and cavitation at the fluid vapour pressure are modelled. Numerical experiments show that entrained, 
entrapped or released gases amplify the pressure peak, increase surge damping and produce asymmetric 
pressure surges. The transient pressure shows a longer period for down-surge and a shorter period for up- 
surge. The up-surge is considerably amplified and the down-surge marginally reduced when compared with 
the gas-free case. These observations are consistent with the experimental observations of other investi- 
gators. Numerical experiments also show that the use of a variable loss factor in the pressure transient 
analysis produces marginally higher maximum and lower minimum pressure transients when compared 
with the constant-loss-factor model for pipelines where the pressures are above the fluid vapour pressure. 
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INTRODUCTION 

Pumping stations commonly work according to the on-off principle whereby the automatic 
starting and stopping of pumps are governed by the pump well level and load demand. Flow 
changes through the pumps give rise to transient pressures in the pipelines, which have to be 
considered in order to prevent failure of the pipelines. The case of stoppage of one or more pumps 
simultaneously due to power failures or operational conditions with check valves in the pumping 
station might cause substantial high and low pressures. At the design stage these pressures have to 
be analysed and suitable surge suppression devices proposed, or an alternative route has to be 
chosen so as to minimize the pressure surge to within suitable levels. The analysis is usually based 
on the assumptions of no air in the water and a constant friction factor of the pipeline. However, 
in some pumping installations, such as sewage pumping stations, air entrainment into the system 
can occur as a result of: falling jets of sewage from the comminutors into the sump near the 
operating pump bellmouths; attached vortex formation arising from the operation of the pumps; 
and the adverse flow path towards the operating pumps. Air may also be admitted into the 
pipeline by vortex action in an inadequately designed air vessel. Trapped air pockets at the top of 
the pipe cross-section at  high points along the pipe profile can also be present owing to the 

027 1-209 1/91/080747-17$08.50 
0 1991 by John Wiley & Sons, Ltd. 

Received February 1990 



748 T. S .  LEE 

incomplete removal of air during the commissioning and filling-up operation or the progressive 
upward migration of pockets of air. The flow in the pipelines would also contain free gas, 
although the volumetric proportion may be small, and most liquid also contains dissolved gases 
in solution. Gas bubbles will be evolved from the liquid during the passage of low-pressure 
transients. When the liquid is subject to high transient pressures, the free gas will be compressed 
and some may be dissolved. The process is highly time- and pressure-dependent. The resulting 
pressure transients with air entrainment and gas release are considerably different from those 
computed according to models with no air and constant friction factor. 

In general, the transient flow in a pipeline can be divided into three phases: waterhammer, 
cavitation and column separation. In the waterhammer phase the release of dissolved gas is small 
and the wave speed depends on the void fraction, which in turn depends on the local pressure. In 
the cavitation phase, gas bubbles are dispersed throughout the liquid owing to the reduction of 
the local transient pressures to the vapour pressure of the liquid. The liquid boils at that pressure 
and the local pressure will not fall further. The liquid in this phase behaves like a gas-liquid 
mixture. Depending upon the pipeline geometry and velocity gradient, the gas bubbles may 
become so large as to fill the entire cross-section of the pipe. This is the column separation phase. 
The existence of column separation, trapped gas volumes and entrained free gas bubbles greatly 
complicates the transient analysis by making the transient wave speed a function of the transient 
pressure. In practice, the analysis is also made more difficult owing to lack of information such as: 
the location and size of trapped air pockets in the pipelines; the amount of free air bubbles 
distributed throughout the liquid; and the rate of gas release and absorption in the liquid as a 
function of pressure and time. This two-phase flow problem has been the subject of much research 
in recent years. 

Whiteman and Pearsall1v2 were the first to study the effects on pressure transients when air is 
entrained into the fluid of a pumping station. Pump shut-down tests were conducted with reflux 
valve closure on two sewage pumping stations with air entrained into the fluid. In general, the 
first pressure peak with entrained air in the pipeline was found to be higher than that predicted by 
the constant-wave-speed waterhammer theory. Two different types of air entrainment models 
have been proposed in the literature for predicting the above-transient pressure behaviour: the 
concentrated vaporous cavity and the air release model.’-’ The concentrated vaporous 
cavity model confines the vapor cavities to fixed computing sections and uses a constant wave 
speed for the fluid in reaches between the cavities. The air release model assumes the evolved and 
free gas to be distributed homogeneously throughout the reaches, thereby requiring variable wave 
speeds which are dependent on gas content and local pressure. The concentrated vaporous cavity 
model produces satisfactory results in slow transients but unstable solutions for rapid transients, 
e.g. pump stoppage with reflux valve closure with air content. The air release model produces 
satisfactory results in pump shut-down cases but is susceptible to numerical damping.**’ This 
damping introduced in the numerical method may give a distorted magnitude of the transient 
pressure damping characteristics due to losses, friction or wave speed variations. 

AIR ENTRAINMENT AND GAS RELEASE VARIABLE-WAVE-SPEED MODEL 

Various earlier investigators3* ha ve observed that the presence of undissolved gas bubbles in 
a fluid greatly reduces the wave speed. The effect of free air on the wave speed is more significant 
at low-pressure conditions, where its volume is greater than at high-pressure conditions. The 
variable-wave-speed model proposed here assumes the presence of a free entrained air content c0 
and a dissolved gas content E, in the liquid at atmospheric pressure. Assumptions are made that: 
the gas-liquid mixture is homogeneous; the free gas bubbles in the liquid follow a polytropic 
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compression law with n =  1.2-1.3; and the pressure within the air bubbles during the transient 
process is in equilibrium with the local fluid pressure. When the computed local transient pressure 
falls below the fluid gas release pressure pg, an instantaneous release of a dissolved gas content cg 
is assumed. The local pressure remains constant and is equal to the vapour pressure. When the 
computed transient pressure recovers to a value above the gas release pressure, an equivalent 
amount of released gas content is assumed to have redissolved into the liquid. Since the local 
pressure remains constant when the computed pressure is below the gas reiease pressure, the 
maximum air content has a limit and hence the wave speed has a lower limit in the model 
proposed which is determined by this air content at the vapour pressure condition. 

Consider a mass of liquid containing a fractional volume of gas in free bubble form, E, the 
volume of the gas plus liquid being V,. The volume of liquid is 

v, =(1 --E)V, 

v, = E v,. 
and the free gas volume is 

On applying a pressure increment Ap to the liquid, the liquid volume will change to 

V: = (1  -Ap/K)(l  -E)V,. (3) 
The gas volume is assumed to be distributed in small-bubble form and to have a polytropic 
change in properties due to partial heat being transferred to the water. Any gas volume change 
will therefore be related through 

P('gY = (P+AP) (vz)n, (4) 

where Vg* is the fractional gas volume at pressure p + Ap. The volume of the gas-liquid mixture at 
pressure p + Ap will therefore become 

v: ~ ( ~ ) i ' n & v l + ( l - ~ ) ( l - ~ ) v l .  P + A P  

With the smaller terms neglected, 

Hence the effective bulk modulus of the fluid with an air fraction content E at a pressure p is given 
by 

The effective bulk modulus of the gas-liquid mixture, KT, including the pipe distensibility effect 
and pipe constraint condition c, is thus given by 

1 ~ E C D  _-  - -+-+--. 
KT K np eE 

Hence at the ith node point and kth time level, as shown in Figure 1, the local wave speed a, at an 
absolute pressure pi with an air fraction content ei is given by 

a: = [ p,(l-&:) (; -+7+- ;;i 3]-"'. (9) 
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Figure 1. Computational grid 

For this model of variable wave speed the initial free air fraction c0 and the dissolved gas fraction 
E ,  at a reference absolute pressure po must be specified. The initial variable wave speed along a 
pipeline (i =0, 1, . . . , N)  is then computed through the absolute pressure distribution along the 
pipeline from equation (9) at k = O  (steady state). 

The transient computation of the fraction of air content along the pipeline depends on the local 
pressure and local air volume and is given by 

&:+ 1 = (6) l in  (E! - E g )  

for p:' < p , ,  

p! 1 l n  
&:+I = (-J (E: + E,). 

This air fraction content is then inserted in equation (9) to compute the wave speed along the 
pipeline for the next time level computation. In this variable-wave-speed model no limit is set for 
the lowest wave speed value. The model computes the lowest values based on the minimum 
system pressure allowable for a real system. For water saturated a t  atmospheric pressure the gas 
release pressure head approaches that of the vapour pressure (i.e. 2.4 m water absolute). The 
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typical free air content in sewage at  atmospheric pressure is about 0.1% and the free gas content 
evolved at the gas release head is about 2.0% at atmospheric head.4,'7,22*23 

VARIABLE LOSS FACTOR 1; IN THE METHOD OF CHARACTERISTICS 

There is experimental which demonstrates that losses due to friction, fittings, etc. 
are affected by unsteadiness in the flow. The unsteadiness in the flow affects the turbulence, 
boundary layer velocity profiles and hence the losses. Kita et aL3' showed experimentally that in 
very slow transients the quasi-steady approximation of losses due to friction can be used with 
satisfactory accuracy. Recent research evidence has shown that for more rapid transients the 
unsteady flow friction factor is greater than the steady flow friction factor in accelerated flows, 
and the converse for decelerated f l o ~ s . ~ '  For such flows an appropriate representation of the 
unsteady loss factor and frictional effects is necessary. A review of the available literature indicates 
that satisfactory theoretical loss models have been developed for unsteady laminar and single- 
phase flow,31-34 while no satisfactory model is available for unsteady turbulent and two-phase 

Thus a modified variable-loss-factor model is proposed here for the study of unsteady pressure 
transient flow with air entrainment and gas release problems. The present model takes into 
account the losses due to the two-phase nature of the flow and the features of the pipelines. This 
model was tested for the case of pump trips due to power failures and valve closure in sewage 
pumping stations. For the variable-loss-factor model proposed here the results show that the 
maximum pressure transient is marginally higher and the minimum pressure transient is 
marginally lower than for the corresponding model with a constant steady state loss factor. 

The loss factor (1;) model proposed for use in conjunction with the method of characteristics 
with air entrainment and gas release in a pipeline system can be evaluated at a local point i as 
follows: 

flow.35 

(a) Rei = ViDi/vi (local effective Reynolds number), 

vi=(l-Ei)V,+EiVg. (11) 

(b) Assume 

(Kloss) i=Km(Rei)  + K,(Rei), 

&(Rei) = local loss factor due to pipe features, 

&(Rei) = ( A x i / D i )  f (Re i ) .  

The total losses at a node point are thus represented by 

Rei 6 1, f ( R e i )  = 64, 

f ( R e i )  = 64/Rei, 1 6 Re, 6 2000, 

Rei > 2000, (A)' = f (Moody's formula36). 

The value of f ( R e i )  is obtained through iteration of the corresponding Colebrook-White 
equation7. 3 7  with the appropriate roughness factor for the pipe at the node point i. 
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(d) For I[f(Rei) - (X) ' ] / f (Rei ) l  >0901, set (A)' = f ( R e i )  and repeat iteration. 
(e) Hence a local loss factor is then defined as 

(X)i = (Kloss)i (DtlAXi). (13) 

The steady state overall loss factor at the operating point of a system can be determined from 
the pump characteristic curve and the system curve. This value is used as a check against the value 
obtained from equation (13) for the summation of i=O, 1, . . . , N at the steady state Reynolds 
number. 

METHOD OF CHARACTERISTICS WITH ai AND (fi)i 
The method of characteristics applied to the pressure transient problem with variable wave speed 
and variable loss factor as modelled above can be described by the following C + -  and C-- 
characteristic equations: 

C+-characteristic equations, 

g d H  dV g A -- + - + - Vsin a + - VI VI =0, 
a dt dt a 2 0  

dxldt = V+ a; (15) 

C--characteristic equations, 

g d H  dV g A _ _  - + - + - Vsin a + - VI VI = 0, a dt dt a 2 0  

dxldt = V- a. (17) 

With reference to the irregular time and regular x grid notation used in Figure 1, i denotes the 
regular x-mesh point value at location x = (iAx) and k denotes the irregular time level correspond- 
ing to time t,=CAt,. The value of the time step At, at each time level is determined by the CFL 
criterion 

Atk=min[kiAx/(lVil+ai)] for i=O, l ,  . . . ,  N, (18) 

where ki is a constant less than unity. 
The characteristic equations specified by (14H17) can thus be approximated by simple finite 

difference expressions. The approach used here is a variation of the well-known 'method 
of specified time i n t e r ~ a l ' . ~ ' ~ ~ - ~ '  In the present execution the time interval Atk at each time level 
tk = C A t k  is allowed to vary according to equation (18). With reference to Figure 1, the 
finite difference approximations for the characteristic equations are 

g H:+'-H, V!+'- Vs g X s  _ _  V,sinai+- V,lV,l =0 ,  
2 0  + _ -  

Atk a, 

xi - x, -- - Vs-as, 
Atk 
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where R is the point of interception of the C+-characteristic line on the x-axis between node 
points i- 1 and i at the kth time level, and S is the interception of the C--characteristic line on the 
x-axis between i and i+ 1. With conditions known at points i- 1, i and i+ 1 at the kth time level, 
the conditions at R and S can be evaluated by a linear interpolation procedure. The conditions at 
R and S are then substituted into equations (19H22) and the solutions at the next, i.e. (k + l)th, 
time level at point i are obtained for i=O,  1,. . . , N. A mesh size of N = lo00 was used for the 
solutions presented in this work. 

BOUNDARY CONDITIONS 

A common flow arrangement in water and sewage engineering consists of a lower reservoir, a 
group of pumps with a check valve in each branch, and a pipeline discharging into an upper 
reservoir (water tower, gravity conduit, aeration well, etc.). In order to safeguard the pipeline and 
its hydraulic components from over- and/or underpressurization, it is important to determine 
extreme pressure loads under transient conditions. Pump stoppage is an operational case which 
has to be investigated and which often gives rise to maximum and minimum pressures. The most 
severe case occurs when all the pumps in a station fail simultaneously due to power failure. In this 
case the flow in the pipeline rapidly diminishes to zero and then reverses. The pump also rapidly 
loses its forward rotation and reverses shortly after the reversal of the flow. As the pump speed 
increases in the reverse direction, it causes great resistance to the back flow, which produces high 
pressure in the discharge line near the pump. To prevent reverse flow through the pump, a check 
valve is usually fitted immediately after each pump. When the flow reverses, the check valve is 
activated and closed. A large pressure transient occurs in the pipeline when the flow reverses, and 
the check valves of the pumps close rapidly. 

The equivalent pump characteristics in the pumping station during pump stoppage and pump 
run-down can be described by the homologous relationship for np pumps as follows: 

H t + '  = Al(Nk+1)2 +(A,/np) (N"') Q",' + ( A 3 / n ; )  (Qt+')2, 

T:+' = B , n p ( N k + ' ) 2  + B,(N'+')Q;+' + ( B , /  n,)(Q;+')', 

qt+' = C, + (C,/np)(Q;+'/Nk+') +(C3/n;)(Qk,+'/Nkf')2, 

(23) 

(24) 

(25) 

T, = - I,dw/dt, (26) 

where H t + '  = Ht[+', I ,  = npl ,  w=2nN, Q is the flow rate; np is the number of pumps, A, ,  A,, A,, 
B,, B 2 ,  B3 and C,, C,, C ,  are single-pump constants and H e ,  T, and qe are the equivalent pump 
head, torque and efficiency respectively. The efficiency of the equivalent pump during pump run- 
down is assumed equal to the efficiency of the corresponding single-pump run-down efficiency. 
Equation (23) is to be solved together with the C--characteristic line described by equations (21) 
and (22) for a pump speed Nk+ determined from equations (24H26) by the procedures following 
FOX,' using the concept of an equivalent pump when there is more than one pump operating in a 
pumping station. The changes in pump speed during pump run-down for both normal and 
turbine modes are modelled. When reversed flow is encountered in the pump, the check valve is 
assumed closed. At this instant, Vt+ is assumed zero for the C--characteristic line at i =O for all 
subsequent time levels. In the case where the check valve closing time is known, the flywheel or 
pump set inertia can be sized such that the pump continues delivery for a period longer than the 
check valve closure time. This will ensure non-reversal of flow before the check valve is able to 
close. Downstream of each of the above profiles is assumed a constant-head reservoir, i.e. 
H V  = constant for all time levels, and this is solved with the Cf -characteristic line for V v  ' 
for each time level. 
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DISCUSSION 

A typical pipeline profile of a sewage pumping station is shown in Figure 2. Figure 3 shows the 
effect of air entrainment and gas release in the variable-wave-speed model on the pressure 
transient when compared with that using a constant-wave-speed model with no air content. It 
shows that released gas and entrained air increase the maximum pressure up-surge along the 
pipeline and reduce the magnitude of the negative pressure down-surge. A study of the many 
corresponding numerical experiments using the variable-wave-speed model shows three distinct 
characteristic differences of pressure surge at an unprotected pumping station following power 
failure and instantaneous closure of the check valve when the flow reverses: (a) the first pressure 
peak is above that predicted by the constant-wave-speed model and the transient times differ, 
(b) the damping of the surge pressure is noticeably larger when compared with the constant-wave- 
speed model, (c) the surges are asymmetric with respect to the static head, while the pressure 
transients for the constant-wave-speed model are symmetric with respect to the static head. If 
there is evolution and subsequent absorption of gas in the liquid along the pipeline, the initial up- 
surge caused by valve closure at the pumping station may be small but is very often followed by a 
delayed substantial pressure up-surge. This delayed substantial pressure up-surge due to gas 
release at the gas release head along the pipeline was also observed by Clarke.41 The arrival of 
this substantial pressure up-surge at the pumping station generates a positive transient which 
travels upstream towards the reservoir. This positive transient raises the pressure along the 
pipeline and causes the free gas present in the flow to dissolve, thus increasing the effective bulk 
modulus and the wave speed (Figure4). This positive pressure wave is then reflected off the 
downstream reservoir as a negative pressure wave. Owing to the higher pressure upstream of the 
reservoir, this negative pressure wave travels rapidly and arrests the high-pressure up-surge at the 

PIPELINE CONTOUR 

0 100 1000 1600 

CHAINAQE (METERS) 

Figure 2. Pipeline contour of pumping station 
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- I  

PRESSURE HEAD DOwNsTRu\M OF WMP 

“1 i 

Figure 3. 

pumping station. Hence the substantial pressure up-surge is present only for a short duration. As 
the surge damping due to losses and the presence of air sets in, the pressure down-surge along the 
pipeline usually does not subsequently fall below the gas release head, and a regular oscillating 
pressure surge will then be observed. Hence the entrainment of free air and the release of gas at the 
gas release head reduce the local wave speed considerably (Figures 3 and 4) and produce a 
complicated phenomenon of reflection of pressure waves off these ‘cavities’. The lower local wave 
speed also increases the duration of the pressure down-surge as compared with the duration of 
the pressure up-surge. 
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Figure 4. 

The above characteristics were also observed experimentally by Whiteman and Pearsall,1,2 
Dawson and Fox4* and Jonsson.’ There are several reasons given in the literature for the increase 
in peak pressure during the pressure transient with air entrainment. Jonsson attributed the 
increase to the compression of ‘an isolated air pocket’ in the flow field after the valve closure. 
Dowson and Fox attributed it to the ‘cumulative effect of minor flow changes during the 
transient’. From the numerous numerical experiments performed on the variable-wave-speed 
model, we observed that the greater peak pressure obtained for the variable-wave-speed model is 
due to the fact that a lower average wave speed delays the wave reflection at  the reservoir and 
thus allows a more complex variation in pressure interaction to occur in the system, culminating 
in a peak at a specific transient interval. Falconer et ~ 1 . ~ ~  showed similarly through computer 
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MAX. AND MIN. PRESSURE HEAD ALONG PIPELINE 
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studies that it is possible for a low wave speed to increase the pressure peak, even though a lower 
wave speed also implies a reduced change in pressure head for a given velocity change. Numerical 
experiments performed in this computer study also showed that the degree of amplification of the 
first pressure peak is dependent upon the rate of deceleration of the flow after the pump trip. An 
increased pump inertia produces a slower rate of deceleration of the flow after pump tripping and 
a smaller amplification of the first pressure peak as compared with the constant-wave-speed 
model. The profound effect of the variable-wave-speed model with different pump set inertias can 
be seen in Figures 5-7 with constant-/variable-friction models. Figure 5 shows that with constant 
wave speed the wave form of the transient pressure is synchronized since the period of the 
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Figure 6. 

pressure wave is constant. When the wave speed varies from one location to another and from 
one instant to another owing to the pressure variation and air content in the fluid, the period of 
the wave form also varies from time to time and from location to location; hence the pressure 
wave forms are non-synchronized in the variable-wave-speed model. Figure 8 shows that the 
variable-loss-factor model produces marginally higher maximum and lower minimum pressure 
transients when compared with the constant-loss-factor model. No significant differences in 
pressure surge values are seen when the transient pressures encountered are above the gas release 
pressure head. 
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Figure 7. 

From the corresponding numerical experiments it is noted that friction and any devices put 
into the system have a damping effect on the pressure waves owing to the hysteresis in the energy 
cycle. However, it is also noted that the damping produced by losses alone is small and is 
independent of the local surge pressure encountered. This is evident in the constant-wave-speed 
model where the damping of the pressure transient is slow. For the variable-wave-speed model 
the damping of the pressure surge is fast. This is due to the fact that the gas content ci at a local 
point will increase as the lower pressure wave is transmitted to that point during a down-surge 
and conversely E~ will decrease as the higher pressure wave is transmitted to a point during the up- 
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Figure 8. 

surge of pressure. Hence there is an increase in the local wave speed during up-surge and a 
decrease in the local wave speed during down-surge. This also explains why the up-surge 
prediction in the variable-wave-speed model is higher than in the corresponding constant-wave- 
speed model and the magnitude of the down-surge prediction is smaller in the variable-wave- 
speed model than in the constant-wave-speed model. Generally, the numerical experiments show 
that the damping produced by the loss factor is much smaller than that produced by the gas 
content in the fluid during the pressure transient process. The precise physical cause of large surge 
damping in transient flow with gas content is still a subject of current research. However, possible 
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mechanisms have been suggested in the form of direct damping due to the increased effective bulk 
viscosity of the fluid as a result of the presence of air bubbles?4 losses due to slip between bubbles 
and water45 and thermodynamic losses.’ A mechanism due to indirect damping is explained by 
Pearsall” in his reflection hypothesis, which states that when bubbly and unclear stretches of 
water alternate and interact, the partial wave reflections occurring at the interfaces break the 
periodic surge wave down. This explains the fast damping of the pressure transient in the 
variable-wave-speed model where air is present. 

CONCLUSIONS 

A numerical model and computational procedure have been developed to study the effects of air 
entrainment in the form of variable wave speed and variable loss factor (including friction) on the 
pressure transient in pumping installations. Free gas in the fluid and cavitation at the fluid vapour 
pressure were modelled. Numerical experiments showed that entrained, entrapped or released 
gases amplified the first pressure peak, increased surge damping and produced asymmetric 
pressure surges with respect to the static head. When air was entrained into the system, the 
pressure transient showed long periods of down-surge and short periods of up-surge. The up- 
surge was considerably amplified and the down-surge reduced in comparison to the gas-free 
constant-wave-speed case. These results are consistent with the experimental and field data 
observed by other  investigator^.^*^^*^^*^^ Numerical experiments also showed that the variable- 
loss-factor model produces slightly higher maximum and lower minimum pressure transients 
when compared with the constant-loss-factor model. They do not, however, show significant 
differences in pressure surge values for realistic engineering applications where the pressures 
encountered are usually above the fluid vapour pressure. 
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APPENDIX: LIST OF SYMBOLS 

wave speed 
constants for pump H-Q curve 
constants for pump T-Q curve 
constants for pump q-Q curve 
parameter describing pipe constraint condition 
mean diameter of pipe 
modulus of elasticity 
local pipe wall thickness 
friction factor 
gravitational acceleration 
gauge piezometric pressure head 
gas release pressure head ( = 2.4 m water absolute) 
node point at x i  = ( i  - 1)Ax 
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Re 
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N ;  
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Ax 
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“8 

EO 

53  

P 

& 

pump set moment of inertia including flywheel 
time level at tk = C A t k  
bulk modulus of elasticity 
length of pipe 
pump speed in rpm at node point i and time level k 
total number of node points along the pipeline 
number of pumps in a pumping station 
pressure inside the pipe 
fluid flow rate 
C+-line intercept on x-axis at kth time level 
C--line intercept on x-axis at kth time level 
Reynolds number 
pump torque 
time 
flow velocity 
distance along pipeline 
pipeline elevation w.r.t. pump intake level 
pipeline inclination (positive downwards) 
pump efficiency 
valve closure function 
time step at kth time level 
node point distance along pipeline 
sewage kinematic viscosity 
gas kinematic viscosity 
fraction of air in liquid 
fraction of free gas in liquid at atmospheric pressure 
fraction of dissolved gas in liquid 
density of fluid 
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